Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Environ Res ; 219: 115067, 2023 02 15.
Article in English | MEDLINE | ID: covidwho-2158788

ABSTRACT

BACKGROUND: Perfluoroalkylated substances (PFAS) are man-made, persistent organic compounds with immune-modulating potentials. Given that pregnancy itself represents an altered state of immunity, PFAS exposure-related immunotoxicity is an important environmental factor to consider in SARS-CoV-2 infection during pregnancy as it may further affect humoral immune responses. AIM: To investigate the relationship between maternal plasma PFAS concentrations and SARS-CoV-2 antibody levels in a NYC-based pregnancy cohort. METHODS: Maternal plasma was collected from 72 SARS-CoV-2 IgG + participants of the Generation C Study, a birth cohort established at the beginning of the COVID-19 pandemic in New York City. Maternal SARS-CoV-2 anti-spike IgG antibody levels were measured using ELISA. A panel of 16 PFAS congeners were measured in maternal plasma using a targeted UHPLC-MS/MS-based assay. Spearman correlations and linear regressions were employed to explore associations between maternal IgG antibody levels and plasma PFAS concentrations. Weighted quantile sum (WQS) regression was also used to evaluate mixture effects of PFAS. Models were adjusted for maternal age, gestational age at which SARS-CoV-2 IgG titer was measured, COVID-19 vaccination status prior to IgG titer measurement, maternal race/ethnicity, parity, type of insurance and pre-pregnancy BMI. RESULTS: Our study population is ethnically diverse with an average maternal age of 32 years. Of the 16 PFAS congeners measured, nine were detected in more than 60% samples. Importantly, all nine congeners were negatively correlated with SARS-CoV-2 anti-spike IgG antibody levels; n-PFOA and PFHxS, PFHpS, and PFHxA reached statistical significance (p < 0.05) in multivariable analyses. When we examined the mixture effects using WQS, a quartile increase in the PFAS mixture-index was significantly associated with lower maternal IgG antibody titers (beta [95% CI] = -0.35 [-0.52, -0.17]). PFHxA was the top contributor to the overall mixture effect. CONCLUSIONS: Our study results support the notion that PFAS, including short-chain emerging PFAS, act as immunosuppressants during pregnancy. Whether such compromised immune activity leads to downstream health effects, such as the severity of COVID-19 symptoms, adverse obstetric outcomes or neonatal immune responses remains to be investigated.


Subject(s)
COVID-19 , Fluorocarbons , Adult , Female , Humans , Infant, Newborn , Pregnancy , Antibodies, Viral , COVID-19/epidemiology , Cross-Sectional Studies , Fluorocarbons/toxicity , Immunoglobulin G , Pandemics , SARS-CoV-2 , Tandem Mass Spectrometry
2.
Toxicol Appl Pharmacol ; 456: 116284, 2022 Dec 01.
Article in English | MEDLINE | ID: covidwho-2086745

ABSTRACT

Genetic and environmental factors impact on the interindividual variability of susceptibility to communicable and non-communicable diseases. A class of ubiquitous chemicals, Per- and polyfluoroalkyl substances (PFAS) have been linked in epidemiological studies to immunosuppression and increased susceptibility to viral infections, but possible mechanisms are not well elucidated. To begin to gain insight into the role of PFAS in susceptibility to one such viral infection, Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), male and female C57BL/6 J mice were exposed to control water or a mixture of 5 PFAS (PFOS, PFOA, PFNA, PFHxS, Genx) for 12 weeks and lungs were isolated for examination of expression of SARS-CoV-2-related receptors Angiotensin-Converting Enzyme 2 (ACE2) and others. Secondary analyses included circulating hormones and cytokines which have been shown to directly or indirectly impact on ACE2 expression and severity of viral infections. Changes in mRNA and protein expression were analyzed by RT-qPCR and western blotting and circulating hormones and cytokines were determined by ELISA and MESO QuickPlex. The PFAS mixture decreased Ace2 mRNA 2.5-fold in male mice (p < 0.0001), with no significant change observed in females. In addition, TMPRSS2, ANPEP, ENPEP and DPP4 (other genes implicated in COVID-19 infection) were modulated due to PFAS. Plasma testosterone, but not estrogen were strikingly decreased due to PFAS which corresponded to PFAS-mediated repression of 4 representative pulmonary AR target genes; hemoglobin, beta adult major chain (Hbb-b1), Ferrochelatase (Fech), Collagen Type XIV Alpha 1 Chain (Col14a1), 5'-Aminolevulinate Synthase 2 (Alas2). Finally, PFAS modulated circulating pro and anti-inflammatory mediators including IFN-γ (downregulated 3.0-fold in females; p = 0.0301, 2.1-fold in males; p = 0.0418) and IL-6 (upregulated 5.6-fold in males; p = 0.030, no change in females). In conclusion, our data indicate long term exposure to a PFAS mixture impacts mechanisms related to expression of ACE2 in the lung. This work provides a mechanistic rationale for important future studies of PFAS exposure and subsequent viral infection.


Subject(s)
COVID-19 , Fluorocarbons , Male , Female , Mice , Animals , Angiotensin-Converting Enzyme 2 , SARS-CoV-2 , Fluorocarbons/toxicity , Cytokines , Mice, Inbred C57BL , Lung , Hormones , RNA, Messenger
3.
Environ Res ; 205: 112565, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1574613

ABSTRACT

BACKGROUND: Humans are exposed to several per- and polyfluoroalkyl substances (PFAS) daily; however, most previous studies have focused on individual PFAS. Although attention to effects of exposure to mixtures of PFAS has grown in recent years, there is no consensus on the appropriate statistical methods that can be used to assess their combined effect on human health. OBJECTIVES: We aim to perform a comprehensive review of the statistical methods used in the existing studies which evaluate the association between exposure to mixtures of PFAS and any adverse human health effect. METHODS: The online databases PubMed, Embase and Scopus were searched for eligible studies, published during the last ten years (last search performed on April 08, 2021). Covidence software was used by two different reviewers to perform a title/abstract screening, followed by a full text revision of the selected papers. RESULTS: A total of 3640 papers were identified, and after the screening process, 53 papers were included in the current review. Most of the studies were published between 2019 and 2021 and were conducted mainly in North America and Europe; more than half of the studies (28 out of 53) were conducted on mother and child pairs. WQS (Weighted Quantile Sum) Regression and BKMR (Bayesian Kernel Machine Regression) were used in 36 out of 53 papers to model mixtures' effects. Health outcomes included in the studies are immunotoxicity (n = 8), fetal development (n = 7), neurodevelopment (n = 9), reproductive hormones (n = 6), thyroid hormones (n = 7), outcomes related to metabolic pathways (n = 16). CONCLUSION: Studies on human exposure to PFAS as complex mixtures and health consequences have substantially increased in the last few years. Based on our findings, we propose that addressing risk from PFAS mixtures will likely require combinations of approaches and implementation of constantly evolving statistical methods. Specific guidelines and tools for quality assessment and publication of mixture observational studies are warranted.


Subject(s)
Alkanesulfonic Acids , Environmental Pollutants , Fluorocarbons , Bayes Theorem , Child , Environmental Pollutants/toxicity , Europe , Fluorocarbons/toxicity , Humans , Thyroid Hormones
4.
Int J Environ Res Public Health ; 18(20)2021 10 12.
Article in English | MEDLINE | ID: covidwho-1463698

ABSTRACT

There is concern that immunotoxic environmental contaminants, particularly perfluoroalkyl substances (PFAS), may play a role in the clinical course of COVID-19 and epidemiologic studies are needed to answer if high-exposed populations are especially vulnerable in light of the ongoing pandemic. The objective was, therefore, to determine if exposure to highly PFAS-contaminated drinking water was associated with an increased incidence of COVID-19 in Ronneby, Sweden, during the first year of the pandemic. We conducted an ecological study determining the sex- and age-standardized incidence ratio (SIR) in the adult population relative to a neighboring reference town with similar demographic characteristics but with only background levels of exposure. In Sweden, COVID-19 is subject to mandatory reporting, and we retrieved aggregated data on all verified cases until 3 March 2021 from the Public Health Agency of Sweden. The SIR in Ronneby was estimated at 1.19 (95% CI: 1.12; 1.27). The results suggest a potential link between high PFAS exposure and susceptibility to COVID-19 that warrants further research to clarify causality.


Subject(s)
Alkanesulfonic Acids , COVID-19 , Drinking Water , Fluorocarbons , Water Pollutants, Chemical , Adult , Alkanesulfonic Acids/analysis , Alkanesulfonic Acids/toxicity , Drinking Water/analysis , Fluorocarbons/analysis , Fluorocarbons/toxicity , Humans , SARS-CoV-2 , Sweden/epidemiology , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
6.
Environ Int ; 153: 106524, 2021 08.
Article in English | MEDLINE | ID: covidwho-1141744

ABSTRACT

BACKGROUND AND OBJECTIVE: The growing impact of the COVID-19 pandemic has heightened the urgency of identifying individuals most at risk of infection. Per- and poly-fluoroalkyl substances (PFASs) are manufactured fluorinated chemicals widely used in many industrial and household products. The objective of this case-control study was to assess the association between PFASs exposure and COVID-19 susceptibility and to elucidate the metabolic dysregulation associated with PFASs exposure in COVID-19 patients. METHODS: Total 160 subjects (80 COVID-19 patients and 80 symptom-free controls) were recruited from Shanxi and Shandong provinces, two regions heavily polluted by PFASs in China. Twelve common PFASs were quantified in both urine and serum. Urine metabolome profiling was performed by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). RESULTS: In unadjusted models, the risk of COVID-19 infection was positively associated with urinary levels of perfluorooctanesulfonic acid (PFOS) (Odds ratio: 2.29 [95% CI: 1.52-3.22]), perfluorooctanoic acid (PFOA) (2.91, [1.95-4.83], and total PFASs (∑ (12) PFASs) (3.31, [2.05-4.65]). After controlling for age, sex, body mass index (BMI), comorbidities, and urine albumin-to-creatinine ratio (UACR), the associations remained statistically significant (Adjusted odds ratio of 1.94 [95% CI: 1.39-2.96] for PFOS, 2.73 [1.71-4.55] for PFOA, and 2.82 [1.97-3.51] for ∑ (12) PFASs). Urine metabolome-PFASs association analysis revealed that 59% of PFASs-associated urinary endogenous metabolites in COVID-19 patients were identified to be produced or largely regulated by mitochondrial function. In addition, the increase of PFASs exposure was associated with the accumulation of key metabolites in kynurenine metabolism, which are involved in immune responses (Combined ß coefficient of 0.60 [95% CI: 0.25-0.95, P = 0.001]). Moreover, alternations in PFASs-associated metabolites in mitochondrial and kynurenine metabolism were also correlated with clinical lab biomarkers for mitochondrial function (serum growth/differentiation factor-15) and immune activity (lymphocyte percentage), respectively. CONCLUSION: Elevated exposure to PFASs was independently associated with an increased risk of COVID-19 infection. PFASs-associated metabolites were implicated in mitochondrial function and immune activity. Larger studies are needed to confirm our findings and further understand the underlying mechanisms of PFASs exposure in the pathogenesis of SARS-CoV2 infection.


Subject(s)
Alkanesulfonic Acids , COVID-19 , Environmental Pollutants , Fluorocarbons , Alkanesulfonic Acids/toxicity , Caprylates/toxicity , Case-Control Studies , China/epidemiology , Chromatography, Liquid , Environmental Pollutants/toxicity , Fluorocarbons/analysis , Fluorocarbons/toxicity , Humans , Pandemics , RNA, Viral , SARS-CoV-2 , Tandem Mass Spectrometry
7.
Int J Environ Res Public Health ; 18(5)2021 03 08.
Article in English | MEDLINE | ID: covidwho-1134151

ABSTRACT

BACKGROUND: In the context of the COVID-19 pandemic, there is interest in assessing if per- and polyfluoroalkyl substances (PFAS) exposures are associated with any increased risk of COVID-19 or its severity, given the evidence of immunosuppression by some PFAS. The objective of this paper is to evaluate at the ecological level if a large area (Red Zone) of the Veneto Region, where residents were exposed for decades to drinking water contaminated by PFAS, showed higher mortality for COVID-19 than the rest of the region. METHODS: We fitted a Bayesian ecological regression model with spatially and not spatially structured random components on COVID-19 mortality at the municipality level (period between 21 February and 15 April 2020). The model included education score, background all-cause mortality (for the years 2015-2019), and an indicator for the Red Zone. The two random components are intended to adjust for potential hidden confounders. RESULTS: The COVID-19 crude mortality rate ratio for the Red Zone was 1.55 (90% Confidence Interval 1.25; 1.92). From the Bayesian ecological regression model adjusted for education level and baseline all-cause mortality, the rate ratio for the Red Zone was 1.60 (90% Credibility Interval 0.94; 2.51). CONCLUSION: In conclusion, we observed a higher mortality risk for COVID-19 in a population heavily exposed to PFAS, which was possibly explained by PFAS immunosuppression, bioaccumulation in lung tissue, or pre-existing disease being related to PFAS.


Subject(s)
Alkanesulfonic Acids , COVID-19 , Fluorocarbons , Bayes Theorem , Cities , Fluorocarbons/toxicity , Humans , Italy/epidemiology , Pandemics , SARS-CoV-2
8.
PLoS One ; 15(12): e0244815, 2020.
Article in English | MEDLINE | ID: covidwho-1059566

ABSTRACT

BACKGROUND: The course of coronavirus disease 2019 (COVID-19) seems to be aggravated by air pollution, and some industrial chemicals, such as the perfluorinated alkylate substances (PFASs), are immunotoxic and may contribute to an association with disease severity. METHODS: From Danish biobanks, we obtained plasma samples from 323 subjects aged 30-70 years with known SARS-CoV-2 infection. The PFAS concentrations measured at the background exposures included five PFASs known to be immunotoxic. Register data was obtained to classify disease status, other health information, and demographic variables. We used ordered logistic regression analyses to determine associations between PFAS concentrations and disease outcome. RESULTS: Plasma-PFAS concentrations were higher in males, in subjects with Western European background, and tended to increase with age, but were not associated with the presence of chronic disease. Of the study population, 108 (33%) had not been hospitalized, and of those hospitalized, 53 (16%) had been in intensive care or were deceased. Among the five PFASs considered, perfluorobutanoic acid (PFBA) showed an unadjusted odds ratio (OR) of 2.19 (95% confidence interval, CI, 1.39-3.46) for increasing severities of the disease. Among those hospitalized, the fully adjusted OR for getting into intensive care or expiring was 5.18 (1.29, 20.72) when based on plasma samples obtained at the time of diagnosis or up to one week before. CONCLUSIONS: Measures of individual exposures to immunotoxic PFASs included short-chain PFBA known to accumulate in the lungs. Elevated plasma-PFBA concentrations were associated with an increased risk of a more severe course of COVID-19. Given the low background exposure levels in this study, the role of exposure to PFASs in COVID-19 needs to be ascertained in populations with elevated exposures.


Subject(s)
Biological Specimen Banks , COVID-19 , Environmental Exposure/adverse effects , Environmental Pollutants , Fluorocarbons , Registries , SARS-CoV-2 , Severity of Illness Index , Adult , Aged , COVID-19/blood , COVID-19/mortality , COVID-19/therapy , Environmental Pollutants/pharmacology , Environmental Pollutants/toxicity , Female , Fluorocarbons/pharmacokinetics , Fluorocarbons/toxicity , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL